Roles
Student Author
Julia A. Giannini '18, Gettysburg College
Document Type
Article
Publication Date
6-9-2020
Department 1
Physics
Abstract
Collective behaviors displayed by groups of social animals are observed frequently in nature. Understanding and predicting the behavior of complex biological systems is dependent on developing effective descriptions and models. While collective animal systems are characteristically nonequilibrium, we can employ concepts from equilibrium statistical mechanics to motivate the measurement of material-like properties in laboratory animal aggregates. Here, we present results from a new set of experiments that utilize high speed footage of two-dimensional schooling events, particle tracking, and projected static and dynamic light fields to observe and control the behavior of negatively phototaxic fish schools (Hemigrammus bleheri). First, we use static light fields consisting of dark circular regions to produce visual stimuli that confine the schools to a range of areas. We find that schools have a maximum density which is independent of group size, and that a swim pressurelike quantity, Π increases linearly with number density, suggesting that unperturbed schools exist on an isotherm. Next, we use dynamic light fields where the radius of the dark region shrinks linearly with time to compress the schools. We find that an effective temperature parameter depends on the compression time and our results are thus consistent with the school having a constant heat flux. These findings further evidence the utility of effective thermodynamic descriptions of nonequilibrium systems in collective animal behavior.
Copyright Note
This is the author's version of the work. This publication appears in Gettysburg College's institutional repository by permission of the copyright owner for personal use, not for redistribution.
DOI
10.1103/PhysRevE.101.062605
Version
Post-Print
Recommended Citation
Giannini, J.A., and ,Puckett, J.G. (2020). Testing a thermodynamic approach to collective animal behavior in laboratory fish schools. Physical Review E, 101 (6), 062605.
Required Publisher's Statement
This article is also available on the publisher's website.